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ABSTRACT

OpenStream is an expressive data-flow task-parallel programming model implemented as a stream-
ing extension to OpenMP. It allows the development of task-parallel applications with data-flow
dependencies and dynamic tasks graphs, where tasks communicate using private data streams.
Despite existing efficient scheduling techniques that achieve high data locality, the performance
of OpenStream applications still strongly depends on the program partitioning done by the pro-
grammer. To relieve the developer of this responsibility and to achieve high performance, the de-
velopment of automated compile-time and runtime approaches to task fusion has long seemed a
promising solution lacking an efficient implementation. Although previous work addresses these
issues using the polyhedral model, many problems still remain unsolved. In this poster we give
an overview of task fusion in OpenStream.
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1 Introduction

Many data-flow task-parallel programming models have been proposed. Languages such
as OpenMP2 and OmpSs [DAB+11] allow the development of applications composed of
dependent tasks that communicate through shared memory. Habanero-Java (HJ) [CZSS11]
enables development of large scale applications with dynamic tasks graphs and fine-grained
synchronization using phasers. Finally OpenStream [PC13] offers some of the benefits of pre-
vious approaches, but also introduces data privatization as a part of the model.

OpenStream, an expressive data-flow task-parallel model, is implemented as a streaming
extension to OpenMP. It allows the development of task-parallel applications with dynamic
tasks graphs that express producer-consumer relationships between tasks. Tasks synchro-
nize and communicate using data streams. Conceptually, streams are infinite in size and
privatized data is accessed by tasks using sliding windows. The compiler and runtime en-
able the execution of such applications on shared memory architectures. An example of an
OpenStream task specification can be seen in Figure 1.

The OpenStream runtime enables efficient scheduling techniques, that exploit data priva-
tization and known producer-consumer relationships, to achieve high data locality [DPH+16].
Despite that, achieving high performance requires the programmer to correctly partition ap-
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#pragma omp task input ( s r i g h t [ i 0 − 1] >> l e f t _ i n [ 1 ] ,
s c e n t e r [ i 0 ] >> c e n t e r _ i n [ 1 ] ,
s l e f t [ i 0 + 1] >> r i g h t _ i n [ 1 ] )

output ( s l e f t [ i 1 ] << l e f t _ o u t [ 1 ] ,
s c e n t e r [ i 1 ] << center_out [ 1 ] ,
s r i g h t [ i 1 ] << r i g h t _ o u t [ 1 ] )

{
double r e s u l t = compute ( l e f t _ i n [ 0 ] , c e n t e r _ i n [ 0 ] ,

r i g h t _ i n [ 0 ] ) ;
l e f t _ o u t [ 0 ] = r e s u l t ;
center_out [ 0 ] = r e s u l t ;
r i g h t _ o u t [ 0 ] = r e s u l t ;

}

(a) OpenStream task computing one element of
the 1d stencil computation per task.

#pragma omp task input ( s r i g h t [ i 0 − 1] >> l e f t _ i n [ 1 ] ,
s c e n t e r [ i 0 ] >> c e n t e r _ i n [ b l o c k _ s i z e ] ,
s l e f t [ i 0 + 1] >> r i g h t _ i n [ 1 ] )

output ( s l e f t [ i 1 ] << l e f t _ o u t [ 1 ] ,
s c e n t e r [ i 1 ] << center_out [ b l o c k _ s i z e ] ,
s r i g h t [ i 1 ] << r i g h t _ o u t [ 1 ] )

{
double l e f t = compute ( l e f t _ i n [ 0 ] , c e n t e r _ i n [ 0 ] ,

c e n t e r _ i n [ 1 ] ) ;
l e f t _ o u t [ 0 ] = l e f t ; center_out [ 0 ] = l e f t ;

f o r ( i n t i = 1 ; i < b l o c k _ s i z e ; i ++)
center_out [ i ] = compute ( c e n t e r _ i n [ i − 1 ] , c e n t e r _ i n [ i ] ,

c e n t e r _ i n [ i + 1 ] ) ;

double r i g h t = compute ( c e n t e r _ i n [ b l o c k _ s i z e − 2 ] ,
c e n t e r _ i n [ b l o c k _ s i z e − 1 ] , r i g h t _ i n [ 0 ] ) ;

r i g h t _ o u t [ 0 ] = r i g h t ; center_out [ b l o c k _ s i z e − 1] = r i g h t ;
}

(b) OpenStream task computing block_size
elements of the 1d stencil computation per task.

Figure 1: An example of the horizontal task fusion in OpenStream. The presented task com-
putes 1d stencil, where the element i is a function of itself and elements i − 1 and i + 1. In
this example the fusion is optimal, i.e., the body of the task has no redundant computations
and streams were coalesced.

plications into tasks of the right size. Tasks, if too large, reduce available parallelism and, if
too small, incur a significant runtime overhead. To mitigate those problems, automated task
transformations that can adjust their granularity are needed.

Recently, Nobre et al. [NDRP19, NDRP20] proposed analyses and tiling techniques for
OpenStream applications using the polyhedral model. Although this is a first step towards
an automated framework, many problems still remain unsolved, such as transformations of
non-affine programs, stream coalescing (i.e., merging multiple streams into one), and prof-
itability heuristics. Some of those problems were addressed in the context of other task-
parallel programming models [NSZS13]. However, because of its stream semantics, Open-
Stream presents different challenges, making it troublesome to implement such solutions.

In this poster we give an overview of task fusion in OpenStream, outlining the compo-
nents that are needed to create an automated framework.

2 Motivation

To quantify the impact of task size on the execution time and motivate the need for task
fusion we evaluate the jacobi-1d benchmark from the OpenStream benchmarks suite. The
main task of the application is based on the stencil calculation that can be implemented
similarly to the code on Figure 1b.

The initial input array of the program is partitioned into blocks of size block_size,
with each block being communicated using its own data stream. The boundary elements are
passed around using additional streams (left and right). In this case, task fusion is trivial, as
the size of the block can be directly controlled by the user as an input parameter. However,
this is not always the case, as the task can be written in many different ways, making more
general task fusion a non-trivial problem.

The result of running the benchmark with different block sizes can be seen on Figure 2.
Initially the execution time decreases as larger tasks reduce the runtime overhead, however
block sizes larger than 214 reduce the available parallelism, harming performance. This ad-
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Figure 2: Average execution time of the jacobi-1d OpenStream benchmark for a matrix with
220 elements and 128 iterations, executing on an Intel Core i7-6700 processor, 4C/8T, running
at 3.40GHz with 16GiB of main memory.

vocates the importance of selecting the right task granularity.

3 Task Fusion

We differentiate two types of tasks fusion. Horizontal task fusion, when multiple instances
of the same task are merged together, or vertical task fusion, when two or more instances of
distinct tasks types, that communicate directly with each other, are merged.

We showed the importance of horizontal task fusion in Section 2. Now we discuss the
problem in more detail by looking at the 1d stencil operation in Figure 1. The naive version
of the code, where each element of the array is processed by a separate task, can be seen
on Figure 1a. We aim to transform the code into something similar to the task in Figure 1b.
Going from one version to the other involves four main steps:

1. Profitability analysis - based on static or runtime analyses of the application, e.g., analy-
sis of pressure and back-pressure between tasks, or runtime profiling, that are used to
decide whether the fusion is profitable and how many tasks should be merged.

2. Merging work functions - this transformation increases the work done by the task. This
may be as simple as replicating the work function the required number of times, en-
suring the resulting code is correct. Another solution may involve calling the work
function repeatedly, by a loop within the task. Stream accesses remain unchanged and
the fused task accesses all the streams accessed by its parts.

3. Task body optimizations - the result of code fusion most likely results in sub-optimal code
with many redundancies. Applying standard compiler optimizations can simplify the
code and improve the task’s performance.

4. Stream accesses coalescing - since streams management is source of overhead in the ap-
plication, reducing the number of streams used by the task may improve performance
significantly. In the context of the provided example, all elements within the block can
be communicated using a single stream, instead of keeping a separate stream for each
array element. Because of the dynamic nature of streams this is a non-trivial effort,
involving data-flow analysis on streams.



The problem of task tiling was partially solved for affine programs [NDRP19], but opti-
mizing programs with arbitrary control flow still remains a challenge.

Vertical fusion follows a similar pattern, however there is no need for stream coalesc-
ing, as input and output streams remain unchanged. Instead, the stream communication
between merged tasks has to be replaced with communication using buffers local to the
task. In fact subsequent optimizations may remove the need for extra buffers by removing
boundaries of merged tasks.

4 Conclusion

In this poster we outlined the components needed to develop an automated framework for
task fusion, alongside the example motivating this work. In future work, we will develop the
techniques discussed here and implement them within the OpenStream compiler and run-
time. We believe this work will not only improve the execution of OpenStream applications
on the CPU, but also build the foundation for more efficient heterogeneous execution, e.g.,
by transforming tasks so they can be compiled/synthesized into more efficient accelerators.
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